
VoxNet: A 3D Convolutional Neural Network for Real-Time Object
Recognition

Daniel Maturana and Sebastian Scherer

Abstract— Robust object recognition is a crucial skill for
robots operating autonomously in real world environments.
Range sensors such as LiDAR and RGBD cameras are in-
creasingly found in modern robotic systems, providing a rich
source of 3D information that can aid in this task. However,
many current systems do not fully utilize this information and
have trouble efficiently dealing with large amounts of point
cloud data. In this paper, we propose VoxNet, an architecture
to tackle this problem by integrating a volumetric Occupancy
Grid representation with a supervised 3D Convolutional Neural
Network (3D CNN). We evaluate our approach on publicly
available benchmarks using LiDAR, RGBD, and CAD data.
VoxNet achieves accuracy beyond the state of the art while
labeling hundreds of instances per second.

I. INTRODUCTION

Semantic object recognition is an important capability
for autonomous robots operating in unstructured, real-world
environments. Meanwhile, active range sensors such as
LiDAR and RGBD cameras are an increasingly common
choice of sensor for modern autonomous vehicles, including
cars [1], quadrotors [2] and helicopters [3]. While these
sensors are heavily used for obstacle avoidance and mapping,
their potential for semantic understanding of the environment
is still relatively unexplored. We wish to take full advantage
of this kind of data for object recognition.

In this paper, we address the problem of predicting an
object class label given a 3D point cloud segment, which
may include background clutter. Most of the current state
of the art in this problem follows a traditional pipeline,
consisting of extraction and aggregation of hand-engineered
features, which are then fed into an off-the-shelf classifier
such as SVMs. Until recently, this was also the state of the
art in image-based object recognition and similar tasks in
computer vision. However, this kind of approach has been
largely superseded by approaches based on Deep Learning [6],
where the features and the classifiers are jointly learned from
the data. In particular, the state of the art for image object
recognition has been dramatically improved by Convolutional
Neural Networks (CNNs) [7]. CNNs have since shown their
effectiveness at various other tasks [8].

While it is conceptually simple to extend the basic approach
to volumetric data, it is not obvious what architectures and
data representations, if any, will yield good performance.
Moreover, volumetric representations can easily become
computationally intractable; perhaps for these reasons, 3D
convolutional nets have been described as a “nightmare” [9].

Authors are with the Robotics Institute, Carnegie Mellon University,
Forbes Ave 5000, Pittsburgh PA 15201 USA { dimatura, basti }
at cmu.edu

Fig. 1. The VoxNet Architecture. Conv(f, d, s) indicates f filters of size
d and at stride s, Pool(m) indicates pooling with area m, and Full(n)
indicates fully connected layer with n outputs. We show inputs, example
feature maps, and predicted outputs for two instances from our experiments.
The point cloud on the left is from LiDAR and is part of the Sydney Urban
Objects dataset [4]. The point cloud on the right is from RGBD and is part
of NYUv2 [5]. We use cross sections for visualization purposes.

The key contribution of this paper is VoxNet, a basic 3D
CNN architecture that can be applied to create fast and
accurate object class detectors for 3D point cloud data. As
we show in the experiments, this architecture achieves state-
of-the-art accuracy in object recognition tasks with three
different sources of 3D data: LiDAR point clouds, RGBD
point clouds, and CAD models.

II. RELATED WORK

A. Object Recognition with Point Cloud Data

There is a large body of work on object recognition using
3D point clouds from LiDAR and RGBD sensors. Most of this
work uses a pipeline combining various hand-crafted features
or descriptors with a machine learning classifier ([10], [11],
[12], [13]). The situation is similar for semantic segmentation,
with structured output classifiers instead of single output
classifiers ([14], [15], [16]). Unlike these approaches, our
architecture learns to extract features and classify objects



from the raw volumetric data. Our volumetric representation
is also richer than point clouds, as it distinguishes free space
from unknown space. In addition, features based on point
clouds often require spatial neighborhood queries, which can
quickly become intractable with large numbers of points.

B. 2.5D Convolutional Neural Networks

Following the success of CNNs on tasks using RGB
images, several authors have extended their use to RGBD
data ([17], [18], [19], [20]). These approaches simply treat
the depth channel as an additional channel, along with the
RGB channels. While straightforward, this approach does not
make full use of the geometric information in the data and
makes it difficult to integrate information across viewpoints.

For LiDAR, [4] propose a feature that locally describes
scans with a 2.5D representation, and [21] studies this
approach in combination with a form of unsupervised feature
learning. [22] propose an encoding that makes better use of
the 3D information in the depth, but is still 2D-centric. Our
work differs from these in that we employ a fully volumetric
representation, resulting in a richer and more discriminative
representation of the environment.

C. 3D Convolutional Neural Networks

Architectures with volumetric (i.e., spatially 3D) con-
volutions have been successfully used in video analysis
([23], [24]). In this case, time acts as the third dimension.
Algorithmically, these architectures work the same as ours,
but the nature of the data is very different.

In the RGBD domain, [25] uses an unsupervised volumetric
feature learning approach as part of a pipeline to detect indoor
objects. This approach is based on sparse coding, which is
generally slower than convolutional models. In concurrent
work, [26] propose a generative 3D convolutional model of
shape and apply it to RGBD object recognition, among other
tasks. We compare this approach to ours in the experiments.

In the LiDAR domain, [27] is an early work that studies a
3D CNN for use with LiDAR data with a binary classification
task. There is also our own previous work [28], which
introduced 3D CNNs for landing zone detection in UAVs.
Compared to this work, we tackle a more general object
recognition task with 3D data from different modalities. We
also study different representations of occupancy and propose
techniques to improve performance when the data varies
significantly in scale and orientation.

III. APPROACH

The input to our algorithm is a point cloud segment, which
can originate from segmentation methods such as [12], [29],
or a “sliding box” if performing detection. The segment is
usually given by the intersection of a point cloud with a
bounding box and may include background clutter. Our task
is to predict an object class label for the segment. Our system
for this task has two main components: a volumetric grid
representing our estimate of spatial occupancy, and a 3D
CNN that predicts a class label directly from the occupancy
grid. We describe each component below.

A. Volumetric Occupancy Grid

Occupancy grids ([30], [31]) represent the state of the
environment as a 3D lattice of random variables (each
corresponding to a voxel) and maintain a probabilistic estimate
of their occupancy as a function of incoming sensor data and
prior knowledge.

There are two main reasons we use occupancy grids.
First, they allow us to efficiently estimate free, occupied
and unknown space from range measurements, even for
measurements coming from different viewpoints and time
instants. This representation is richer than those which only
consider occupied space versus free space such as point
clouds, as the distinction between free and unknown space can
potentially be a valuable shape cue. Second, they can be stored
and manipulated with simple and efficient data structures. In
this work, we use dense arrays to perform all our CNN
processing, as we use small volumes (323 voxels) and GPUs
work best with dense data. To keep larger spatial extents in
memory we use hierarchical data structures and copy specific
segments to dense arrays as needed. Theoretically this allows
us to store a potentially unbounded volume while using small
occupancy grids for CNN processing.

B. Reference frame and resolution

In our volumetric representation, each point (x, y, z) is
mapped to discrete voxel coordinates (i, j, k). The mapping is
a uniform discretization but depends on the origin, orientation
and resolution of the voxel grid in space. The appearance of
the voxelized objects depends heavily on these parameters.

For the origin, we assume it is given as an input, e.g.
obtained by a segmentation algorithm or given by a sliding
box.

For the orientation, we assume that the z axis of the grid
frame is approximately aligned with the direction of gravity.
This can be achieved with an IMU or simply keeping the
sensor upright. This still leaves a degree of freedom, the
rotation around the z axis (yaw). If we defined a canonical
orientation for each object and were capable of detecting
this orientation automatically, it would be reasonable to
always align the grid to this orientation. However, it is often
non-trivial in practice to detect this orientation from sparse
and noisy point clouds. In this paper we propose a simple
alternative based on data augmentation, discussed in III-F.

For the resolution, we adopt two strategies, depending on
the dataset. For our LiDAR dataset, we use a fixed spatial
resolution, e.g. a voxels of (0.1m)

3. For the other datasets,
the resolution is chosen so the object of interest occupies
a subvolume of 24 × 24 × 24 voxels. In all experiments
we use a fixed occupancy grid of size 32× 32× 32 voxels.
The tradeoff between these two strategies is that in the first
case, we maintain the information given by the relative scale
of objects (e.g., cars and persons tend to have a consistent
physical size); in the second case, we avoid loss of shape
information when the voxels are too small (so that the object
is larger than the grid) or when the voxels are too large (so
that details are lost by aliasing).



C. Occupancy models

Let {zt}Tt=1 be a sequence of range measurements that
either hit (zt = 1) or pass through (zt = 0) a given voxel
with coordinates (i, j, k). Assuming an ideal beam sensor
model, we use 3D ray tracing [32] to calculate the number of
hits and pass-throughs for each voxel. Given this information,
we consider three different occupancy grid models to estimate
occupancy:

Binary occupancy grid. In this model, each voxel is
assumed to have a binary state, occupied or unoccupied.
The probabilistic estimate of occupancy for each voxel is
computed with log odds for numerical stability. Using the
formulation from [31], we update each voxel traversed by
the beam as

ltijk = lt−1ijk + ztlocc + (1− zt)lfree (1)

where locc and lfree are the log odds of the cell being occupied
or free given that the measurement hit or missed the cell,
respectively. We set these to the values suggested in [33],
lfree = −1.38 and locc = 1.38 and clamp the log odds to
(−4, 4) to avoid numerical issues. Empirically we found that
within reasonable ranges these parameters had little effect on
the final outcome. The initial probability of occupancy is set
to 0.5, or l0ijk = 0. In this case, the network acts on the log
odd values lijk.

Density grid. In this model each voxel is assumed to have
a continuous density, corresponding to the probability the
voxel would block a sensor beam. We use the formulation
from [34], where we track the Beta parameters αt

ijk and βt
ijk,

with a uniform prior α0
ijk = β0

ijk = 1 for all (i, j, k). The
update for each voxel affected by the measurement zt is

αt
ijk = αt−1

ijk + zt

βt
ijk = βt−1

ijk + (1− zt)

and the posterior mean for the cell at (i, j, k) is

µt
ijk =

αt
ijk

αt
ijk + βt

ijk

(2)

In this case we use µijk as input to the network.
Hit grid. This model only consider hits, and ignores the

difference between unknown and free space. Each voxel has
an initial value h0ijk = 0 and is updated as

htijk = min(ht−1ijk + zt, 1) (3)

While this model discards some potentially valuable infor-
mation, in our experiments it performs surprisingly well.
Moreover, it does not require raytracing, which is useful in
computationally constrained situations.

D. 3D Convolutional Network Layers

There are three main reasons CNNs are an attractive option
for our task. First, they can explicitly make use of the spatial
structure of our problem. In particular, they can learn local
spatial filters useful to the classification task. In our case, we
expect the filters at the input level to encode spatial structures
such as planes and corners at different orientations. Second, by

stacking multiple layers the network can construct a hierarchy
of more complex features representing larger regions of space,
eventually leading to a global label for the input occupancy
grid. Finally, inference is purely feed-foward and can be
performed efficiently with commodity graphics hardware.

In this paper, we consider CNNs consisting of the
following types of layers, illustrated in Figure 1. Each
layer type is denoted a shorthand description in the format
Name(hyperparameter).

Input Layer. This layer accepts a fixed-size grid of I×J×K
voxels. In this work, we use I = J = K = 32. Depending on
the occupancy model, each value for each grid cell is updated
from Equation 1, Equation 2 or Equation 3. In all three cases
we subtract 0.5 and multiply by 2, so the input is in the
(−1, 1) range; no further preprocessing is done. While this
work only considers scalar-valued inputs, our implementation
can trivially accept additional values per cell, such as LiDAR
intensity values or RGB information from cameras.

Convolutional Layers C(f, d, s). These layers accept four-
dimensional input volumes in which three of the dimensions
are spatial, and the fourth contains the feature maps. The
layer creates f feature maps by convolving the input with
f learned filters of shape d × d × d × f ′, where d are the
spatial dimensions and f ′ is the number of input feature maps.
Convolution can also be applied at a spatial stride s. The
output is passed through a leaky rectified nonlinearity unit
(ReLU) [35] with parameter 0.1.

Pooling Layers P (m). These layers downsample the input
volume by a factor of by m along the spatial dimensions by
replacing each m×m×m non-overlapping block of voxels
with their maximum.

Fully Connected Layer FC(n). Fully connected layers have
n output neurons. The output of each neuron is a learned
linear combination of all the outputs from the previous layer,
passed through a nonlinearity. We use ReLUs save for the
final output layer, where the number of outputs corresponds
to the number of class labels and a softmax nonlinearity is
used to provide a probabilistic output.

E. Proposed architecture

Given these layers and their hyperparameters, there are
countless possible architectures. To explore this space, in
our previous work [28] we performed extensive stochastic
search over hundreds of 3D CNN architectures on a simple
classification task on simulated LiDAR data. Several of the
best-performing networks had a small number of parameters
in comparison to state of the art networks used for image
data; [7] has around 60 million parameters, while the majority
of our best models used less than 2 million.

While it is difficult to compare these numbers meaningfully,
given the vast differences in tasks and datasets, we speculate
that volumetric classification for point clouds is in some
sense a simpler task, as many of the factors of variation in
image data (perspective, illumination, viewpoint effects) are
diminished or not present.

Guided by this precedent, our base model, VoxNet, is
C(32, 5, 2)−C(32, 3, 1)−P (2)−FC(128)−FC(K), where



K is number of classes (Figure 1). VoxNet is essentially a
simpler version of the two-stage model reported in [28].
The changes aimed to reduce the number of parameters and
increase computational efficiency, making the network easier
and faster to learn. The model has 921736 parameters, most
of them from inputs to the first dense layer.

F. Rotation Augmentation and Voting

As discussed in subsection III-B, it is nontrivial to maintain
a consistent orientation of objects around their z axis. To
counter this problem, many features for point clouds are
designed to be rotationally invariant (e.g. [36], [37]). Our
representation has no built-in invariance to large rotations;
we propose a simple but effective approach to deal with this
problem.

At training time, we augment the dataset with by creating
n copies of each input instance, each rotated 360◦/n intervals
around the z axis. At testing time, we pool the activations
of the output layer over all n copies. In this paper, n is 12
or 18. This can be seen as a voting approach, similar to how
networks such as [7] average predictions over random crops
and flips of the input image; however, it is performed over
an exhaustive sampling of rotations, not a random selection.

This approach is inspired by the interpretation of convo-
lution as weight sharing across translations; implicitly, we
are sharing weights across rotations. Initial versions of this
approach were implemented by max-pooling or mean-pooling
the dense layers of the network during training in the same
way as during test time. However, we found that the approach
described above yielded comparable results while converging
noticeably faster.

G. Multiresolution Input

Visual inspection of the LiDAR dataset suggested a
(0.2m3) resolution preserves all necessary information for
the classification, while allowing sufficient spatial context for
most larger objects such as trucks and trees. However, we hy-
pothesized that a finer resolution would help in discriminating
other classes such as traffic signs and traffic lights, especially
for sparser data. Therefore, we implemented a multiresolution
VoxNet, inspired by the “foveal” architecture of [24] for
video analysis. In this model we use two networks with
an identical VoxNet architectures, each receiving occupancy
grids at different resolutions: (0.1m)3 and (0.2m)3. Both
inputs are centered on the same location, but the coarser
network covers a larger area at low resolution while the finer
network covers a smaller area at high resolution. To fuse the
information from both networks, we concatenate the outputs
of their respective FC(128) layers and connect them to a
softmax output layer.

H. Network training details

Training of the network parameters is performed by
Stochastic Gradient Descent (SGD) with momentum. The
objective is the multinomial negative log-likelihood plus
0.001 times the L2 weight norm for regularization. SGD is
initialized with a learning rate of 0.01 for the LiDAR dataset

Fig. 2. From top to bottom, a point cloud from the Sydney Objects Dataset,
a point cloud from NYUv2, and two voxelized models from ModelNet40.

and with 0.001 in the the other datasets. The momentum
parameter was 0.9. Batch size is 32. The learning rate was
decreased by a factor of 10 each 8000 batches for the LiDAR
dataset and each 40000 batches in the other datasets.

Dropout regularization is added after the output of each
layer. Convolutional layers were initialized with the method
proposed by [38], whereas dense layers were initialized from
a zero-mean Gaussian with σ = 0.01.

Following common practices for CNN training, we augment
the data by adding randomly perturbed copies of each
instance. The perturbed copies are generated dynamically
during training and consist of randomly mirrored and shifted
instances. Mirroring is done by along the x and y axes;
shifting is done between −2 to 2 voxels along all axes.

Our implementation uses a combination of C++ and Python.
The Lasagne1 library was used to compute gradients and
accelerate computations on the GPU. The training process
takes around 6 to 12 hours on our K40 GPU, depending on
the complexity of the network.

IV. EXPERIMENTS

To evaluate VoxNet we consider benchmarks with data
from three different domains: LiDAR point clouds, RGBD
point clouds and CAD models. Figure 2 shows examples
from each.

1) LiDAR data - Sydney Urban Objects: Our first set of
experiments was conducted on the Sydney Urban Objects
Dataset2, which contains labeled Velodyne LiDAR scans of
631 urban objects in 26 categories. We chose this dataset
for evaluation as it provides labeled object instances and the
LiDAR viewpoint, which is used to compute occupancy. When
voxelizing the point cloud we use all points in a bounding

1https://github.com/Lasagne/Lasagne
2http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml



box around the object, including background clutter. To make
our results comparable to published work, we follow the
protocol employed by the dataset authors. We report the
average F1 score, weighted by class support, for a subset
of 14 classes over four standard training/testing splits. For
this dataset we perform augmentation and voting with 18
rotations per instance.

2) CAD data - ModelNet: The ModelNet datasets were
introduced by Wu et al. [26] to evaluate 3D shape classifiers.
ModelNet40 has 151,128 3D models classified into 40 object
categories, and ModelNet10 is a subset based on classes
that are found frequently in the NYUv2 dataset [5]. The
authors provide the 3D models as well as voxelized versions,
which have been augmented by 12 rotations. We use the
provided voxelizations and train/test splits for evaluation.
In these voxelizations the objects have been scaled to fit a
30 × 30 × 30 grid; therefore, we don’t expect to benefit
from a multiresolution approach, and we use the single-
resolution VoxNet. For comparison of performance we report
the accuracy averaged per class.

3) RGBD data - NYUv2: Wu et al also evaluate their
approach on RGBD point clouds obtained from the NYUv2
dataset [5]. We use the train/test split provided by the authors,
which uses 538 images from the RMRC challenge3 for
training, and the rest for testing. After selecting the boxes
sharing a label with ModelNet10, we obtain 1386 testing
boxes and 1422 training ground truth boxes. Wu et al report
results on a subset of these boxes with high depth quality4,
whereas we report results using all the boxes, possibly making
the task more difficult. We will make the split available to
facilitate comparison.

For this dataset, we compute our own occupancy grids.
However, to make results comparable to Wu et al we do
not use a fixed voxel size; instead, we crop and scale the
object bounding boxes to 24 × 24 × 24, with 4 voxels of
margin; likewise, we use 12 rotations instead of 18. As in the
Sydney Objects dataset, we keep all points in a bounding box
around the object; unlike Wu et al, we do not use a per-pixel
object mask to remove outlying depth measurements from
the voxelization.

A. Qualitative results

Learned filters. Figure 3 depicts cross sections of some
learned filters from the input layer and corresponding feature
maps learned from the input in the Sydney Objects dataset.
The filters in this layer seem to encode primitives such as
edges, corners, and “blobs”. Figure 4 shows filters learned in
the NYUv2 and ModelNet40 datasets. The filters are similar
across datasets, similar to what occurs for image data.

Rotational invariance. A natural question is whether the
network learns some degree of rotational invariance. Figure 5
is an example supporting this hypothesis, where the two fully
connected layers show a highly (but not completely) invariant
response across 12 rotations of the input.

3http://ttic.uchicago.edu/˜rurtasun/rmrc/
4Personal communication.

Fig. 3. Cross sections of three 5 × 5 × 5 filters from the first layer of
VoxNet in the Sydney Objects Database, with corresponding feature map on
the right.

Fig. 4. Cross sections along the x, y and z axes of selected first layer
filters learned in the ModelNet40 and NYUv2 datasets.

Fig. 5. Neuron activations for the two fully connected layers of VoxNet
when using the point cloud from Fig. 1 (right) as input in 12 different
orientations. For the first fully connected layer only 48 features are shown.
Each row corresponds to a rotation around z and each column corresponds
to a neuron. The activations show a approximate rotational invariance. The
neurons in the right correspond to output classes. The last column, for toilet,
is the correct response. Near 90◦, the object becomes confused with a chair
(third column); by voting across all orientations we obtain the correct answer.



TABLE I
EFFECTS OF ROTATION AUGMENTATION AND VOTING

Training Augm. Test Voting Sydney F1 ModelNet40 Acc

Yes Yes 0.72 0.83
Yes No 0.71 0.82
No Yes 0.69 0.69
No No 0.69 0.61

TABLE II
EFFECT OF OCCUPANCY GRIDS

Occupancy Sydney F1 NYUv2 Acc

Density grid 0.72 0.71
Binary grid 0.71 0.69
Hit grid 0.70 0.70

B. VoxNet variations

Rotation Augmentation. We study four different cases for
Rotation Augmentation, depending on whether it is applied or
not at train time (as augmentation) and test time (as voting)
for the Sydney Objects and ModelNet40 datasets. For the
cases in which no voting is performed at test time, a random
orientation is applied on the test instances, and the average
over four runs is reported. For the cases in which no training
time augmentation is performed, there are two cases. In
ModelNet40, we select the object in a canonical pose as the
training instance. For Sydney Objects, this information is not
available, and we use the unmodified orientation from the
data. Table I shows the results. They indicate that training
time augmentation is more important. As suggested by the
qualitative example above, the network learns some degree of
rotational invariance, even if not explicitly enforced. However,
voting at training time voting still gives a small boost. For
ModelNet40, we see a large degradation of performance when
we train on canonical poses but test on an arbitrary poses, as
expected. For Sydney Objects there is no such mismatch, and
there is no clear effect. Since rotation augmentation seems
consistently beneficial, in the rest of the results section we
use VoxNet with rotation augmentation at both test time and
run time.

Occupancy grids. We also study the effect of the Occupancy
Grid representation in Table II. We found VoxNet to be quite
robust to the different representations. Against expectations,
we found the Hit grid to perform comparably or better than
the other approaches, though the differences are small. This
is possibly because any advantage provided by differentiating
between free space and unknown space is negated by the
extra viewpoint-induced variability of Density and Binary
grids relative to Hit grids. By default, we will use Density
grids in the experiments below.

Resolution. For the Sydney Object Dataset we evaluated
VoxNet with voxels of size 0.1m and 0.2m. We found them
to perform almost indistinguishably, with an F1 score of
0.72. On the other hand, fusing both with the multiresolution
approach described in subsection III-G slightly outperformed
both with a score of 0.73.

1) Comparison to other approaches: Here we compare
VoxNet against publicly available results in the literature.

TABLE III
COMPARISON WITH OTHER METHODS IN SYDNEY OBJECT DATASET

Method Avg F1

UFL+SVM[21] 0.67
GFH+SVM[37] 0.71

Multi Resolution VoxNet 0.73

TABLE IV
COMPARISONS WITH SHAPENET IN MODELNET (AVG ACC)

Dataset ShapeNet VoxNet

ModelNet10 0.84 0.92
ModelNet40 0.77 0.83

TABLE V
COMPARISON WITH SHAPENET IN NYUV2 (AVG ACC)

Dataset ShapeNet VoxNet VoxNet Hit

NYU 0.58 0.71 0.70
ModelNet10→NYU 0.44 0.34 0.25

Table III shows our best VoxNet against the best approach
from [21], which combines an unsupervised form of Deep
Learning with SVM classifiers, and [37], which designs
a rotationally invariant descriptor and classifies it with a
nonlinear SVM. We show a small increase in accuracy relative
to these approaches. Moreover, we expect our approach to
be much faster than approaches based on nonlinear SVMs,
as these do not scale well to large datasets.

Finally, we compare against the Shapenet architecture
proposed by Wu et al [26] in the task of classification
for ModelNet10, ModelNet40, and in the NYUv2 datasets,
as well as in the task of classifying the NYUv2 dataset
with a model trained on ModelNet10. Shapenet is also a
volumetric convolutional architecture. It is trained generatively
with discriminative fine tuning, and also employs rotation
augmentation for training. ShapeNet is a relatively large
architecture, with over 12.4 million parameters, while VoxNet
has less than 1 million. We do not use pretraining for NYUv2,
but instead train from scratch. Table IV shows results in the
ModelNet datasets and Table V shows results with density
grids (VoxNet) and hit grids (VoxNet Hit) for the two tasks
involving the NYU dataset.

Despite the fact we use a more adverse testing set, VoxNet
outperforms in ShapeNet in all tasks except the cross-domain
task (second row). We are unsure what causes the difference.
Both models perform rotation augmentation at training time;
VoxNet also votes over rotations at test time, but this only
accounts for 1-2% improvement. The simpler architecture
of VoxNet may result in better generalization when using
purely discriminative training. On the other hand, the worse
performance in the cross-domain task may be because the
discriminative training is less capable of dealing with the
domain shift, or because we did not use masks to select
points.

C. Timing

We use a Tesla K40 GPU in our experiments. Our slowest
configuration, the multiresolution VoxNet with rotational



voting, takes around 6ms when classified individually, and
around 1ms when averaged over a batch of size 32. De-
pending on the number of points, raytracing may also be a
bottleneck; our implementation takes around two milliseconds
for around 2000 points (typical for LiDAR) but up to half
a second for 200k points, as may happen with RGBD. For
this situation, one can use Hit Grids, or use one of several
raytracing optimization strategies in the literature.

V. CONCLUSIONS

In this work, we presented VoxNet, a 3D CNN architecture
for for efficient and accurate object detection from LiDAR and
RGBD point clouds, and studied the effect of various design
choices on its performance. Our best system outperforms
the state of the art in various benchmarks while performing
classification in real time.

In the future we are interested in the integration of data
from other modalities (e.g., cameras), and the application of
this method to other tasks such as semantic segmentation.

ACKNOWLEDGMENTS

This research was sponsored under a fellowship by United
Technologies Research Center. The Tesla K40 used for this
research was donated by the NVIDIA Corporation. We thank
the reviewers for their feedback.

REFERENCES

[1] C. Urmson, J. Anhalt, H. Bae, J. A. D. Bagnell, C. R. Baker, R. E.
Bittner, T. Brown, M. N. Clark, M. Darms, D. Demitrish, J. M. Dolan,
D. Duggins, D. Ferguson , T. Galatali, C. M. Geyer, M. Gittleman,
S. Harbaugh, M. Hebert, T. Howard, S. Kolski, M. Likhachev ,
B. Litkouhi, A. Kelly , M. McNaughton, N. Miller, J. Nickolaou,
K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, V. Sadekar, B. Salesky,
Y.-W. Seo, S. Singh, J. M. Snider, J. C. Struble, A. T. Stentz, M. Taylor
, W. R. L. Whittaker, Z. Wolkowicki, W. Zhang, and J. Ziglar,
“Autonomous driving in urban environments: Boss and the urban
challenge,” JFR, vol. 25, no. 8, pp. 425–466, June 2008.

[2] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an rgb-d camera,” in ISRR, Flagstaff, Arizona, USA, Aug. 2011.

[3] S. Choudhury, S. Arora, and S. Scherer, “The planner ensemble and
trajectory executive: A high performance motion planning system with
guaranteed safety,” in AHS, May 2014.

[4] A. Quadros, J. Underwood, and B. Douillard, “An occlusion-aware
feature for range images,” in ICRA, May 14-18 2012.

[5] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor
segmentation and support inference from rgbd images,” in ECCV,
2012.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, 2015.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[8] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: an astounding baseline for recognition,” CoRR,
vol. abs/1403.6382, 2014.

[9] G. Hinton, “Does the brain do inverse graphics?” Brain and Cognitive
Sciences Fall Colloquium.

[10] A. Frome, D. Huber, and R. Kolluri, “Recognizing objects in range
data using regional point descriptors,” ECCV, vol. 1, pp. 1–14, 2004.

[11] J. Behley, V. Steinhage, and A. B. Cremers, “Performance of histogram
descriptors for the classification of 3D laser range data in urban
environments,” in ICRA, 2012, pp. 4391–4398.

[12] A. Teichman, J. Levinson, and S. Thrun, “Towards 3D object recogni-
tion via classification of arbitrary object tracks,” in ICRA, 2011, pp.
4034–4041.

[13] A. Golovinskiy, V. G. Kim, and T. Funkhouser, “Shape-based recogni-
tion of 3D point clouds in urban environments,” ICCV, 2009.

[14] D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classi-
fication of 3-D point clouds with learned high-order markov random
fields,” in ICRA, 2009.

[15] H. Koppula, “Semantic labeling of 3D point clouds for indoor scenes,”
NIPS, 2011.

[16] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” in CVPR, 2012.

[17] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” in RSS, 2013.

[18] Richard Socher and Brody Huval and Bharath Bhat and Christopher D.
Manning and Andrew Y. Ng, “Convolutional-Recursive Deep Learning
for 3D Object Classification,” in NIPS, 2012.

[19] L. A. Alexandre, “3D object recognition using convolutional neural
networks with transfer learning between input channels,” in IAS, vol.
301, 2014.

[20] N. Höft, H. Schulz, and S. Behnke, “Fast semantic segmentation of
RGBD scenes with gpu-accelerated deep neural networks,” in 37th
Annual German Conference on AI, 2014, pp. 80–85.

[21] M. De Deuge, A. Quadros, C. Hung, and B. Douillard, “Unsupervised
feature learning for classification of outdoor 3d scans,” in ACRA, 2013.

[22] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features
from RGB-D images for object detection and segmentation,” in ECCV,
2014.

[23] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE TPAMI, vol. 35, no. 1, pp. 221–
231, 2013.

[24] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.

[25] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3D
scene labeling,” in ICRA, 2014.

[26] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shape modeling,”
in CVPR, 2015.

[27] D. Prokhorov, “A convolutional learning system for object classification
in 3-D lidar data,” IEEE TNN, vol. 21, no. 5, pp. 858–863, May 2010.

[28] D. Maturana and S. Scherer, “3D convolutional neural networks for
landing zone detection from lidar,” in ICRA, 2015.

[29] B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and S. Singh,
“A pipeline for the segmentation and classification of 3D point clouds,”
in ISER, 2010.

[30] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in ICRA, 1985.

[31] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Auton. Robots, vol. 15, no. 2, pp. 111–127, 2003.

[32] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray
tracing,” in Eurographics ’87, Aug. 1987, pp. 3–10.

[33] D. Hähnel, D. Schulz, and W. Burgard, “Map building with mobile
robots in populated environments,” in IROS, 2002.

[34] G. D. Tipaldi and K. O. Arras, “FLIRT - interest regions for 2D range
data,” in ICRA, 2010.

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, vol. 30, 2013.

[36] A. Johnson, “Spin-images: A representation for 3-D surface matching,”
Ph.D. dissertation, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 1997.

[37] T. Chen, B. Dai, D. Liu, and J. Song, “Performance of global descriptors
for velodyne-based urban object recognition,” in IV, June 2014, pp.
667–673.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” CoRR,
vol. abs/1502.01852, 2015.


